Focus on...

After this lesson, you will be able to...
- represent single-variable linear inequalities verbally, algebraically, and graphically
- determine if a given number is a possible solution of a linear inequality

Did You Know?

Zdeno Chara is the tallest person who has ever played in the NHL. He is 206 cm tall and is allowed to use a stick that is longer than the NHL’s maximum allowable length.

The official rule book of the NHL states limits for the equipment players can use. One of the rules states that no hockey stick can exceed 160 cm. What different ways can you use to represent the allowable lengths of hockey sticks?

Explore Inequalities

1. a) Show how you can use a number line to graph lengths of hockey sticks in centimetres. Use a convenient scale for the range of values you have chosen to show. Why did you select the scale you chose?
 b) Mark the maximum allowable length of stick on your line.

2. a) Consider the NHL’s rule about stick length. Identify three different allowable stick lengths that are whole numbers. Identify three that are not whole numbers. Mark each value on your number line.
 b) Think about all the possible values for lengths of sticks that are allowable. Describe where all of these values are located on the number line. How could you mark all of these values on the number line?
3. **a)** Give three examples of stick lengths that are too long. Where are these values located on the number line?

b) Discuss with a partner how to state the possible length of the shortest illegal stick. Is it reasonable to have a minimum length for the shortest illegal stick? Why or why not?

Reflect and Check

4. The value of 160 cm could be called a boundary point for the allowable length of hockey sticks.

a) Look at the number line and explain what you think the term *boundary point* means.

b) In this situation, is the boundary point included as an allowable length of stick? Explain.

5. The allowable length of hockey sticks can be expressed mathematically as an **inequality**. Since sticks must be less than or equal to 160 cm in length, the linear inequality is \(l \leq 160 \), where \(l \), in centimetres, represents the stick length.

Write an inequality to represent the lengths of illegal sticks. Discuss your answer with a classmate.

Did You Know?

Most adult hockey sticks range from 142 cm to 157.5 cm in length.

Did You Know?

The world’s largest hockey stick and puck are in Duncan, British Columbia. The stick is over 62 m in length and weighs almost 28 000 kg.
Link the Ideas

Reading an inequality depends on the inequality symbol used.

<table>
<thead>
<tr>
<th>Inequality</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a > b$</td>
<td>a is greater than b</td>
</tr>
<tr>
<td>$a < b$</td>
<td>a is less than b</td>
</tr>
<tr>
<td>$a \geq b$</td>
<td>a is greater than or equal to b</td>
</tr>
<tr>
<td>$a \leq b$</td>
<td>a is less than or equal to b</td>
</tr>
<tr>
<td>$a \neq b$</td>
<td>a is not equal to b</td>
</tr>
</tbody>
</table>

Example 1: Represent Inequalities

Many jobs pay people a higher rate for working overtime. Reema earns overtime pay when she works more than 40 h a week.

a) Give four possible values that would result in overtime pay.

b) Verbally express the amount of time that qualifies for overtime as an inequality.

c) Express the inequality graphically.

d) Express the inequality algebraically.

e) Represent the amount of time that does not qualify for overtime as an inequality. Express the inequality verbally, graphically, and algebraically.

Solution

a) Reema does not qualify for overtime if she works exactly 40 h. She qualifies only if she works more than 40 h. Some examples include 40.5 h, 42 h, 46.25 h, and 50 h.

b) In order to qualify for overtime, Reema needs to work more than 40 h.

c) Draw a number line to represent the inequality graphically. Display the value 40 and values close to 40. The value 40 is a boundary point. This point separates the regular hours from the overtime hours on the number line. Draw an open circle at 40 to show the boundary point. Starting at 40, draw an arrow pointing to the right to show that the possible values of t are greater than but not equal to 40.

The open circle shows that the value 40 is not a possible value for the number of hours that qualify for overtime.
d) The inequality is \(t > 40 \), where \(t \) represents the amount of time, in hours, that Reema works in a week.

e) Verbally: Reema does not qualify for overtime if the number of hours she works is less than or equal to 40 h.

Graphically: Draw a closed circle at 40. Draw an arrow pointing to the left of 40 to show the possible values of \(t \) less than or equal to 40.

Algebraically: Using \(t \) to represent the amount of time, in hours, that Reema works, \(t \leq 40 \).

Show You Know

In many provinces, you must be at least 16 years of age to get a driver’s licence.

a) Sketch a number line to represent the situation.

b) Represent the situation algebraically.

Example 2: Express Inequalities

a) Express the inequality shown on the number line verbally and algebraically.

\[-15 \quad -20 \quad -10 \]

b) Express the inequality shown on the number line algebraically.

\[0 \quad 2 \quad 3 \]

c) Express the inequality \(x \geq -\frac{4}{7} \) graphically.

d) Express the inequality \(35 < n \) graphically.

Solution

a) The number line shows a closed circle on \(-17\) and an arrow to the right. This means values are the same as or larger than \(-17\).

Verbally: The number line indicates all the values greater than or equal to \(-17\).

Algebraically: Using \(x \) as the variable, \(x \geq -17 \).
b) The space between 2 and 3 is divided into ten intervals, so each one represents 0.1 or $\frac{1}{10}$.

The number line shows an open circle on 2.3 and an arrow to the left. This indicates the values less than 2.3 but not including 2.3.

Using x as the variable, $x < 2.3$ or $x < \frac{23}{10}$ or $x < \frac{23}{10}$.

c) The inequality represents values greater than or equal to $-\frac{4}{7}$.

The boundary point is between -1 and 0.

Draw a number line with -1 and 0 labelled. Divide the space between -1 and 0 into seven intervals.

Draw a closed circle at $-\frac{4}{7}$. Draw an arrow to the right to indicate values that are greater than or equal to $-\frac{4}{7}$.

d) In this inequality, the variable is on the right. You can read the inequality as “35 is less than n.” This is the same as saying n is larger than 35. Draw a number line showing an open circle on 35 and an arrow pointing to the right.

Show You Know

a) Express the inequality shown on the number line algebraically.

b) Represent the inequality $n < -12$ on a number line.

c) Write an inequality for the values shown on the number line. Describe a real-life scenario that the inequality might represent.

d) Show the possible values for x on a number line, if $-7 \geq x$. What is a different way to express $-7 \geq x$ algebraically?
Example 3: Represent a Combination of Inequalities

Many real life situations can be described by a combination of two inequalities. Represent the situation described in the newspaper headline using inequalities. Show it verbally, graphically, and algebraically.

Solution

The newspaper headline describes two inequalities.

Verbally: Daily water use was greater than or equal to 327 L and daily water use was less than or equal to 343 L.

Graphically: Draw a closed circle at 327 and a closed circle at 343. Draw a line segment joining the two circles. This graph represents values that are greater than or equal to 327, and less than or equal to 343.

Algebraically: Use \(w \) to represent the number of litres of water used. You can represent this situation with two inequalities.

\[w \geq 327 \text{ and } w \leq 343 \]

The values that satisfy both inequalities represent the situation.

Show You Know

The most extreme change in temperature in Canada took place in January 1962 in Pincher Creek, Alberta. A warm, dry wind, known as a chinook, raised the temperature from \(-19 \, ^\circ\text{C}\) to \(22 \, ^\circ\text{C}\) in one hour. Represent the temperature during this hour using inequalities. Express the inequalities verbally, graphically, and algebraically.
Check Your Understanding

Communicate the Ideas

1. Consider the inequalities \(x > 10 \) and \(x \geq 10 \).
 a) List three possible values for \(x \) that satisfy both inequalities. Explain how you know.
 b) Identify a number that is a possible value for \(x \) in one but not both inequalities.
 c) How are the possible values for inequalities involving > or < different than for inequalities involving \(\geq \) or \(\leq \)? Give an example to support your answer.

2. On a number line, why do you think an open circle is used for the symbols < and >, and a closed circle for the symbols \(\leq \) and \(\geq \)?

3. Tiffany and Charles have each written an inequality to represent numbers that are not more than 15. Their teacher says that both are correct. Explain why.

 Charles: \[15 \geq x \]

 Tiffany: \[x \leq 15 \]

4. Consider the inequality \(x \neq 5 \).
 a) List at least three possible values for \(x \).
 b) How many values are not possible for \(x \)? Explain.
 c) Explain how you would represent the inequality on a number line.

Key Ideas

- A linear inequality compares linear expressions that may not be equal.
 \(x \geq -3 \) means that \(x \) is greater than or equal to \(-3\).
- Situations involving inequalities can be represented verbally, graphically, and algebraically.
 - Verbally: Use words.
 - Graphically: Use visuals, such as diagrams and graphs.
 - Algebraically: Use mathematical symbols, such as numbers, variables, operation signs, and the symbols <, >, \(\leq \), and \(\geq \).
- An inequality with the variable on the right can be interpreted two ways.
 \(8 < x \) can be read “\(8 \) is less than \(x \)” This is the same as saying “\(x \) is greater than \(8 \)”
Practise

For help with #5 to #9, refer to Example 1 on pages 342–343.

5. Write the inequality sign that best matches each term. Use an example to help explain your choice for each.
 a) at least
 b) fewer than
 c) maximum
 d) must exceed

6. For which inequalities is 4 a possible value of \(x \)? Support your answer using two different representations.
 a) \(x > 3 \)
 b) \(x < 4 \)
 c) \(x > -9 \)
 d) \(x \geq 4 \)

7. Write a word statement to express the meaning of each inequality. Give three possible values of \(y \).
 a) \(y \geq 8 \)
 b) \(y < -12 \)
 c) \(y \leq 6.4 \)
 d) \(y > -12.7 \)

8. At the spring ice fishing derby, only fish 32 cm or longer qualify for the prize categories.
 a) Draw a number line to represent the situation.
 b) Write a statement to represent the sizes of fish that qualify for prizes.

For help with #9 to #12, refer to Example 2 on pages 343–344.

9. Write a word statement to express each inequality.
 a) \[\begin{array}{c}
 \text{a.png}
 \end{array} \]
 b) \[\begin{array}{c}
 \text{b.png}
 \end{array} \]
 c) \[\begin{array}{c}
 \text{c.png}
 \end{array} \]

10. Express each inequality algebraically in two different ways.
 a) \[\begin{array}{c}
 \text{a.png}
 \end{array} \]
 b) \[\begin{array}{c}
 \text{b.png}
 \end{array} \]
 c) \[\begin{array}{c}
 \text{c.png}
 \end{array} \]

11. Sketch a number line to show each inequality.
 a) \(x > 3 \)
 b) \(x < 12 \)
 c) \(x \geq -19 \)
 d) \(-3 \geq x \)

12. Represent each inequality graphically.
 a) \(y \leq 10.7 \)
 b) \(y \geq -5.3 \)
 c) \(y < -\frac{4}{5} \)
 d) \(4.8 > x \)

For help with #13 to #15, refer to Example 3 on page 345.

13. For each combination of inequalities, show the possible values for \(x \) on a number line.
 a) \(x > 12 \) and \(x < 17 \)
 b) \(x \geq -5 \) and \(x \leq 0 \)
 c) \(x \geq 1\frac{3}{4} \) and \(x \leq 4 \)
 d) \(x < -4\frac{1}{2} \) and \(x > -11 \)

14. a) Represent the possible values for \(y \) graphically, if \(y > -9.3 \) and \(y < -6.7 \).
 b) Mark any three values on the number line. For each one, explain whether it is a possible value for \(y \).

15. Represent the values shown in red on each number line by a combination of inequalities.
 a) \[\begin{array}{c}
 \text{a.png}
 \end{array} \]
 b) \[\begin{array}{c}
 \text{b.png}
 \end{array} \]
 c) \[\begin{array}{c}
 \text{c.png}
 \end{array} \]

For help with #16 to #19, refer to Example 3 on page 345.

9.1 Representing Inequalities • MHR 347
Apply

16. The manager of a clothing store has set goals for her sales staff. Express each goal algebraically.
 a) The monthly total sales, \(m \), will be a minimum of $18 000.
 b) At month end, the total time, \(t \), spent counting store inventory will be at most 8 h.
 c) The value of total daily sales, \(d \), will be more than $700.

17. If Emily keeps a daily balance of at least $1500 in her bank account, she will pay no monthly fees.
 a) Draw a number line to represent the situation.
 b) If \(x \) represents her daily balance, write an inequality that represents the possible values for \(x \) when she will pay no fees.

18. Paul is training for a race and hopes to beat the record time. The number line represents the finishing times that will allow him to beat the record.
 a) Write a statement to express the finishing times that will let Paul beat the record.
 b) Express the inequality algebraically.

19. a) Develop a problem that could be represented by an inequality. Express the inequality verbally.
 b) Graph the inequality.
 c) Express the inequality algebraically.

20. Owen has a coupon for a restaurant.
 ![Coupon Image]
 a) Owen buys a meal for $10.75. If \(m \) is the cost of his second meal, write an inequality to represent the possible values of \(m \) that will allow him to use the coupon.
 b) Represent the inequality graphically.

21. Shanelle is buying insurance for a car to drive to and from work. The cost of insurance will be higher if she works farther than 15 km from home.
 a) Verbally express the inequality that represents the possible values for the distance for which Shanelle will have to pay more insurance.
 b) Sketch a number line to represent the inequality.

22. During winter, ice roads allow access to remote places in northern communities. The ice road to Aklavik, NWT is made through the Mackenzie River Delta. The ice road to Tuktoyuktuk travels up the Mackenzie River and out onto the sea ice. Ice roads are made by flooding the existing ice on a river or lake until it reaches the required thickness.
For safety reasons, there are restrictions such as the ones shown.

Ice Road Limits

- Weight: 4 t
- Speed: 30 km/h
- Minimum Space Between Vehicles: 50 m

Represent each restriction

a) graphically

b) algebraically

Extend

23. **a)** If the inequalities \(x \geq 6 \) and \(x \leq 6 \) are both true, describe the possible values for \(x \).

b) What would a number line showing possible values of \(x \) look like for this situation? Justify your answer.

24. Bluesky is building a wooden puzzle triangle. She has cut two sides that measure 30 cm and 80 cm, respectively. The longest side of the triangle is 80 cm. Write inequalities to represent the possible lengths for the third side of the triangle.

25. What values of \(x \) would each of the following combinations of inequalities represent? Explain verbally and show graphically.

 a) \(x > 4 \) and \(x < 7 \)

 b) \(x < 4 \) and \(x < 7 \)

 c) \(x > 4 \) and \(x > 7 \)

 d) \(x < 4 \) and \(x > 7 \)

For safety reasons, some amusement park rides have age and height restrictions for riders.

a) Choose an amusement park ride that you have seen or design one of your own. Describe your ride.

b) For your ride, consider the safety restrictions or conditions that you might impose on riders. List at least three restrictions. Use terms of your choice.

c) Represent each restriction algebraically using a different variable for each.

d) Sketch a sign. Use words and graphics that clearly inform riders about each of your restrictions.

Literacy Link

A metric tonne (t) is a measurement of mass that equals 1000 kg.
Focus on…

After this lesson, you will be able to…

• solve single-step linear inequalities and verify solutions
• compare the processes for solving linear equations and linear inequalities
• compare the solutions of linear equations and linear inequalities
• solve problems involving single-step linear inequalities

How might you solve Katie’s puzzle?

Consider the mathematical operations of addition, subtraction, multiplication, and division. What operations (+, −, ×, ÷), if any, will reverse the situation so that Joe has the greater number?
Explore Mathematical Operations and Linear Inequalities

1. On a long strip of paper, draw a number line that shows integers from \(-20\) to \(20\).

2. a) Work with a partner. Each partner needs to choose an even, positive whole number that is less than \(10\). Do not choose the same number. Use a different token to show the position of each partner’s starting number on the number line.

 b) Record an inequality that compares the starting numbers. Note the direction of the inequality symbol and who has the greater number.

 c) Choose the same mathematical operation to perform on each partner’s number. Move the markers to show the resulting numbers. If necessary, extend your number line.

 Whose resulting number is greater? Record an inequality that compares these numbers.

 Subtract 4.
 Move the counters.

 d) Starting each time with your original numbers and inequality, take turns to choose a different mathematical operation and perform it. Each time, move the counters. Whose number is greater? Record the resulting inequality.

 e) Try different operations until you are able to predict which operations will reverse an inequality symbol and which ones will keep it the same. Organize your observations and results.

3. a) Conduct a new trial by choosing one negative and one positive number. Use these starting numbers to test your predictions in #2e).

 b) Model each operation using the number line and markers. Record your results.

Reflect and Check

4. Consider how the markers moved on the number line.

 a) What mathematical operations changed the direction of the inequality symbol? Explain.

 b) What operations kept the inequality symbol the same? Explain.

 c) Develop an example to support your explanation for parts a) and b).

5. Review your strategy for solving Katie’s puzzle. What advice would you give about an operation that would make Joe’s number greater than Katie’s?

Materials

- long strip of paper or number line
- ruler
- two different-coloured tokens or markers
Example 1: Solve Inequalities

Solve each inequality.

a) \(-2x < 8\)
b) \(x - 3 \geq 2\)
c) \(-5 > \frac{x}{3}\)

Solution

a) **Method 1: Use a Model**

You can model the inequality \(-2x < 8\) using blocks.

![Model for \(-2x < 8\)](image)

The left side models the less than side of the inequality. How can you separate the blocks on both sides of the model into two equal groups?

The model shows the inequality with two negative \(x\)-blocks on the left side and eight positive unit blocks on the right side. In order for the left side to be less than the right side, each negative \(x\)-block must be less than four positive unit blocks.

![Model for \(-x < 4\)](image)

The inequality \(-x < 4\) will be true for \(x > -4\). Notice that each side has changed its sign and the inequality symbol is reversed. Represent this solution using blocks. The side with the positive \(x\)-block is now greater than the right side.

![Model for \(x > -4\)](image)

The solution to the inequality \(-2x < 8\) is \(x > -4\).

Method 2: Isolate the Variable

\[-2x < 8\]

\[
\frac{-2x}{-2} > \frac{8}{-2}
\]

\[x > -4\]

The solution to the inequality is \(x > -4\).
b) Isolate the variable.
\[
x - 3 \geq 2 \\
x - 3 + 3 \geq 2 + 3 \\
x \geq 5
\]
The solution to the inequality is \(x \geq 5 \).

How does multiplying by a positive number on both sides affect the inequality symbol?

How does multiplying by a positive number on both sides affect the inequality symbol?

The solution to the inequality is \(x \geq 5 \).

c) Isolate the variable.
\[
-5 > \frac{x}{3} \\
(-5) \times 3 \geq \frac{x}{3} \times 3 \\
-15 \geq x \\
x < -15
\]
The solution to the inequality is \(x < -15 \).

Show You Know

Solve each inequality.

a) \(x - 1.6 \leq -5.6 \)

b) \(-10 > 4x \)

c) \(\frac{x}{-8} > 3 \)

Example 2: Verify Solutions to Inequalities

Trevor was asked to solve the inequality \(-2x \geq 11\). He represented his solution, \(x \geq -5.5 \), on a number line. Verify whether Trevor’s solution of the inequality is correct.

Solution

Substitute some possible values of \(x \) into the original inequality:

• Check that the value of the boundary point is correct.
• Check that the inequality symbol is correct.

If the number line is correct, the boundary point of \(-5.5\) should make the two sides of the inequality the same.

Substitute \(-5.5\) into the inequality.

Check:
\[
-2x = 11 \\
-2(-5.5) = 11 \\
11 = 11
\]

True statement

The two sides are equal.

Therefore, \(-5.5\) is the correct boundary point.
If the number line is correct, any value greater than -5.5 should make a true statement.

Substitute one or more values greater than -5.5, such as -5 and 0, into the inequality.

Check:

\[
\begin{align*}
-2x & \geq 11 \\
-2(-5) & \geq 11 \\
10 & \geq 11 \\
\text{False statement} & \quad \text{False statement}
\end{align*}
\]

Substituting numbers greater than -5.5 does not result in true statements.

Trevor has drawn the arrow facing the wrong way on the number line. He should have changed the direction of the inequality symbol in his solution. The solution should be $x \leq -5.5$.

\[
\begin{align*}
-2x & \geq 11 \\
-2(-8) & \geq 11 \\
16 & \geq 11 \\
\text{True statement} & \quad \text{True statement}
\end{align*}
\]

Trevor’s solution is not correct. He forgot to reverse the inequality sign when dividing by a negative number.

Show You Know

Verify the solution for each inequality. If incorrect, what is the solution?

a) For the inequality $x - 12 \leq 20$, the solution is $x \leq 32$.

b) For the inequality $-5x < 30$, the solution is $x < -6$.
Example 3: Model and Solve a Problem

A games store is offering games on sale for $12.50, including tax. Sean has set his spending limit at $80. How many games can Sean buy and stay within his limit?

a) Write an inequality to model the problem.
b) Solve the inequality and interpret the solution.

Solution

a) If \(n \) represents the number of games that Sean can buy, the cost of \(n \) games is 12.5 times \(n \). Sean must spend no more than $80.

The situation can be modelled with the inequality \(12.5n \leq 80 \).

b) \(12.5n \leq 80 \)

\[
\frac{12.5n}{12.5} \leq \frac{80}{12.5}
\]

\(n \leq 6.4 \)

Sean can buy up to and including six games and stay within his spending limit.

Show You Know

Yvonne is planting trees as a summer job. She gets paid $0.10 per tree planted. She wants to earn at least $20/h. How many trees must she plant per hour in order to achieve her goal?

a) Write an inequality to model the number of trees Yvonne must plant to reach her goal.
b) Will the solution be a set of whole numbers or a set of integers? Explain.
c) Solve the inequality and interpret the solution.

Did You Know?

Piecework is work paid by the amount done, not by the time it takes. For example, tree planters are paid by the number of trees they plant.
Key Ideas

• The solution to an inequality is the value or values that makes the inequality true.
 \[5x > 10 \]
 A specific solution is any value greater than 2. For example, 2.1, 3, or 22.84.
 The set of all solutions is \(x > 2 \).

• You can solve an inequality involving addition, subtraction, multiplication, and division by isolating the variable.
 \[
 \begin{align*}
 x - 3 & \leq 5 \\
 x - 3 + 3 & \leq 5 + 3 \\
 x & \leq 8 \\
 \end{align*}
 \]
 \[
 \begin{align*}
 8x & \leq 24 \\
 \frac{x}{-2} & > 6 \\
 \end{align*}
 \]
 \[
 \begin{align*}
 8(x) & \leq 24 \\
 \frac{x}{-2} & \times -2 < 6 \times -2 \\
 \end{align*}
 \]
 \[
 \begin{align*}
 x & \leq 3 \\
 x & < -12 \\
 \end{align*}
 \]

• To verify the solution to an inequality, substitute possible values into the inequality:
 ▪ Substitute the value of the boundary point to check if both sides are equal.
 ▪ Substitute specific value(s) from the solution to check that the inequality symbol is correct.

Check Your Understanding

Communicate the Ideas

1. Maria and Ryan are discussing the inequality \(2x > 10 \).

 Maria: The solution to the inequality is 6. When I substitute 6 for \(x \), a true statement results.

 Ryan: I agree that 6 is a solution but it is not the whole solution.

 What does Ryan mean?

2. Explain how the process for verifying a solution is different for a linear inequality than for a linear equation. Discuss your answer with a classmate.
3. What process would you use to solve the inequality \(-15x \leq 90\)?

4. Represent on a number line
 - the linear equation \(6x = 18\)
 - the linear inequality \(6x \geq 18\)
 Compare the solutions. How are they the same? How are they different?

Practise

For help with #5 to #8, refer to Example 1 on pages 352–353.

5. Solve each inequality.
 a) \(x - 7 \geq 22\)
 b) \(4 < x + 11\)
 c) \(8.6 + x > -5.2\)
 d) \(100 \leq x + 65\)

6. Solve each inequality.
 a) \(6y \geq 54\)
 b) \(29 > -2y\)
 c) \(3.1y \leq -12.4\)
 d) \(-1.6y < -10\)

7. Solve each inequality.
 a) \(\frac{x}{5} > 30\)
 b) \(\frac{x}{-4} \geq -9\)
 c) \(2 \geq \frac{x}{1.2}\)
 d) \(-\frac{1}{6}x < 5\)

8. Look at the following operations. For each one, does the inequality symbol need to be reversed when the operation is performed on both sides of an inequality? Why or why not?
 a) Subtract 5.
 b) Multiply by 6.
 c) Add \(-15\).
 d) Divide by \(-3\).
 e) Multiply by \(-19.7\).
 f) Divide by 0.3.

9. Verify whether the specific solution is correct for each inequality.
 a) \(x - 2.5 \leq 10; x = 12\)
 b) \(3x \geq 21; x = 8\)
 c) \(-4x < 20; x = -3\)
 d) \(-\frac{1}{5}x \leq 3; x = -20\)

10. Verify whether the specific solution satisfies each inequality.
 a) \(y - 10.2 \geq 18; y = 30\)
 b) \(-6y \leq 36; y = -7\)
 c) \(-\frac{2}{3}y \geq 10; y = 10\)
 d) \(\frac{1}{2}y < 13; y = -2\)

11. Show whether \(x < 4\) is the solution for each inequality.
 a) \(-3x > -12\)
 b) \(10 + x > 14\)
 c) \(1 > \frac{x}{4}\)
 d) \(-x > -4\)

12. Verify that the solution shown on each number line is correct.
 a) \(x + 10 > 14\)
 b) \(-3.2 < \frac{x}{5}\)

13. Verify each solution represented graphically.
 a) \(-10 \geq x - 1\)
 b) \(-5x \geq -62\)
14. The Super Fencing Company builds cedar fences for homes at a cost of $85 per section of fence, including tax. How many sections of fence could you buy if you could spend no more than $1400?
 a) Model the problem using an inequality.
 b) Solve the inequality.
 c) Is the boundary point a reasonable solution for the number of fence sections? Explain.

15. Megan is competing in a series of mountain bike races this season. She gets 6 points for each race she wins. If she gets more than 50 points in total, she will move up to the next racing category. How many race wins this season will allow her to move up to the next category?
 a) Use an inequality to represent the problem.
 b) Determine the solution and use it to solve the problem.
 c) Is the boundary point a reasonable solution for the number of race wins? Explain.

Apply

16. For each of the following inequalities, state three values that are specific solutions and three values that are non-solutions.
 a) \(-5 + x < -10\)
 b) \(-3x < 24\)

17. Colin’s teacher asked him to solve the inequality \(-5x \geq -15\). His solution was \(x \leq 3\). He explained that he reversed the inequality symbol because of the negative number. Write a more accurate explanation.

18. A local sports complex offers the following options for sharpening skates.

<table>
<thead>
<tr>
<th>Skate Sharpening Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Rate: $5.75 per pair of skates</td>
</tr>
<tr>
<td>Special: $49 per month for unlimited sharpening</td>
</tr>
</tbody>
</table>

 a) Estimate at what point the special would be the better option. Show the process you used. Why do you think your method provides a reasonable estimate?
 b) Model and solve the problem using an inequality. Compare the answer to your estimate.

19. The owner of a craft store donates 3% of her profits to a local charity every month. If she wants to donate at least $250 this month, how much profit will the business need to earn?
 a) Model and solve the problem using an inequality.
 b) Verify your solution. Show your work.

20. Andrew’s family is driving from Winnipeg to Saskatoon. Before leaving, they fill the gas tank with 57 L of fuel. The car uses fuel at an average rate of 8.4 L/100 km for highway driving. How many kilometres can they drive on this amount of fuel? What assumptions did you make?

21. Natalie is entering the 3200-m event at an upcoming meet. Each lap of the track is 400 m. Her goal is to beat the current record of 9 min 23 s. How fast must she run each lap, on average, to beat the record?
 a) Explain why the situation can be modelled using the inequality \(8x < 563\).
 b) Solve the problem and verify your solution. Show your work.
22. Fiona has a rewards card that gives her a reward point for every $5 she spends. If she earns at least 120 points in a year, she gets a bonus. How much does she need to spend to get at least 120 points?

Extend

23. Chris has a weekend business building doghouses. Each doghouse takes 4 h to build and is sold for $115. Chris wants to earn at least $1000 per month. He wants to work no more than 50 h on his business per month.
 a) Write two inequalities to model the situation.
 b) Solve each inequality.
 c) What possible numbers of doghouses can he build each month and stay within his guidelines?

24. Solve and check the inequality \(-\frac{2}{5}x < \frac{1}{3}\).
 Show the solution on a number line.

25. If \(-2x > 22\) and \(-4x < 60\), determine the possible values of \(x\) that satisfy both inequalities. Show your solution on a number line.

26. A food company that is developing a new energy bar has not decided on the size of the bar. The recipe includes 9% protein and 13% fat. The company wants the bar to contain at least 6 g of protein and no more than 10 g of fat. Use two inequalities to determine the possible range of masses for the bar.

27. Consider the inequality \(ax \leq 5a\).
 a) Solve the inequality if \(a > 0\).
 b) Solve the inequality if \(a < 0\).

28. Solve each combination of inequalities.
 a) \(-5 \leq x + 9\) and \(x + 9 \leq 8\)
 b) \(-2 < 2x\) and \(2x < 12\)
 c) \(-15 \leq -6x\) and \(-6x < 9\)

Math Link

Some amusement parks offer single-ride tickets, where you pay each time you ride, and all-day passes, where you pay once for unlimited rides. The prices for both types of tickets need to be high enough for the amusement park to earn a profit but low enough that people decide to come.

Search various media, such as newspapers, magazines, and the Internet. Look for information about ticket prices at amusement parks.

a) Choose a price for single-ride tickets and a price for all-day passes. Explain why your choices are reasonable.

b) Use an inequality to determine the number of rides that make one option a better deal than the other.

c) Your friends plan on going on seven rides in your amusement park. Which is the better option for them? Show your work.
Focus on…
After this lesson, you will be able to…
• solve multi-step linear inequalities and verify their solutions
• compare the processes for solving linear equations and linear inequalities
• solve problems involving multi-step linear inequalities

Bryan’s grandmother gave him $60 to spend at the go-cart track. Each lap at the track costs $3.50. How many laps can he buy if he wants to have at least $20 left over to buy lunch for himself and his grandmother?

Describe different strategies you could use to solve this problem.

Explore Multi-Step Inequalities

1. a) Estimate the number of laps Bryan can buy.

 b) How can your strategy help you set up and solve an inequality?

2. Develop an inequality that can be used to determine the number of laps Bryan can buy.

3. a) Outline a strategy for solving your inequality.

 b) Use your strategy to determine the solution. Show your steps.

 c) How can you use the solution to solve the problem?

Reflect and Check

4. a) Is the solution to the problem a single value? Or is it a set of several possible values? Explain.

 b) What words in the problem indicate that you could model it using an inequality? Explain.

5. a) Compare the strategy you used to solve the multi-step inequalities with that of a classmate. Which strategy do you prefer? Explain.

 b) How did your knowledge of solving linear equations help you solve these inequalities?
Link the Ideas

Example 1: Solve Multi-Step Inequalities

a) Solve \(\frac{x}{4} + 3 > 8 \). Show your solution algebraically and graphically.

Verify the solution.

b) Solve \(-3x - 10 \leq 5x + 38\), and verify the solution.

c) Solve \(-2(x + 3) \leq 10x + 18\), and verify the solution.

Solution

a) Use the same process to solve a multi-step inequality as for solving a linear equation.

\[
\frac{x}{4} + 3 > 8
\]

\[
\frac{x}{4} + 3 > 8 - 3
\]

\[
\frac{x}{4} > 5
\]

\[
\frac{x}{4} \times 4 > 5 \times 4
\]

\[
x > 20
\]

The number line shows the solution.

Verify the solution:
Substitute the boundary point 20 to check that both sides are equal.

\[
\frac{x}{4} + 3 = 8
\]

\[
\frac{20}{4} + 3 = 8
\]

\[
5 + 3 = 8
\]

\[
8 = 8
\]

Substitute a value greater than 20. If a true statement results, then the inequality symbol is correct.

\[
\frac{x}{4} + 3 > 8
\]

\[
\frac{24}{4} + 3 > 8
\]

\[
6 + 3 > 8
\]

\[
9 > 8
\]

Since both statements are true, the solution \(x > 20 \) is correct.
b) Isolate the variable.

Isolate the Variable on the Left Side

\[-3x - 10 \leq 5x + 38\]

\[-3x - 10 + 10 \leq 5x + 38 + 10\]

\[-3x \leq 5x + 48\]

\[-3x - 5x \leq 5x + 48 - 5x\]

\[-8x \leq 48\]

\[-8x \geq 48\]

\[-8 \geq -8\]

\[x \geq -6\]

Isolate the Variable on the Right Side

\[-3x + 3x - 10 \leq 5x + 38 + 3x\]

\[-10 \leq 8x + 38\]

\[-10 - 38 \leq 8x + 38 - 38\]

\[-48 \leq 8x\]

\[-48 \leq 8x\]

\[-6 \leq x\]

Verify the solution:

Substitute the boundary point \(-6\) to check that both sides are equal.

\[-3x - 10 = 5x + 38\]

\[-3(-6) - 10 = 5(-6) + 38\]

\[18 - 10 = -30 + 38\]

\[8 = 8\]

Substitute a value greater than \(-6\). If a true statement results, then the inequality symbol is correct.

\[-3x - 10 \leq 5x + 38\]

\[-3(0) - 10 \leq 5(0) + 38\]

\[0 - 10 \leq 0 + 38\]

\[-10 \leq 38\]

Since both statements are true, the solution \(x \geq -6\) is correct.

c) **Method 1: Use the Distributive Property**

\[-2(x + 3) \leq 10x + 18\]

\[-2x - 6 \leq 10x + 18\]

\[-2x - 6 - 10x \leq 10x + 18 - 10x\]

\[-12x - 6 \leq 18\]

\[-12x - 6 + 6 \leq 18 + 6\]

\[-12x \leq 24\]

\[-12 \geq 24\]

\[-12 \geq -12\]

\[x \geq -2\]

Method 2: Divide First

You can divide first by \(-2\).

\[-2(x + 3) \leq 10x + 18\]

\[-2(x + 3) \geq 10x + 18\]

\[-2 \geq -2\]

\[x + 3 \geq -5x - 9\]

\[x + 5x + 3 \geq -5x - 9 + 5x\]

\[6x + 3 \geq -9\]

\[6x + 3 - 3 \geq -9 - 3\]

\[6x \geq -12\]

\[6x \geq -12\]

\[6 \geq 6\]

\[x \geq -2\]
Verify the solution:
Substitute the boundary point \(-2\).
\[
-2(x + 3) = 10x + 18 \\
-2(-2) + 3 = 10(-2) + 18 \\
-2(1) = -20 + 18 \\
-2 = -2
\]
Substitute a value greater than \(-2\), such as 0.
\[
-2(x + 3) \leq 10x + 18 \\
-2(0 + 3) \leq 10(0) + 18 \\
-2(3) \leq 0 + 18 \\
-6 \leq 18
\]
Since both statements are true, the solution \(x \geq -2\) is correct.

Show You Know

Solve each inequality and verify the solution.

a) \(4x + 11 > 35\)

b) \(5 - 2x > 10x + 29\)

c) \(4(x - 2) \geq 5x - 12\)

Example 2: Solve a Problem Using Inequalities

Sarah has offers for a position as a salesperson at two local electronics stores. Store A will pay a flat rate of $55 per day plus 3\% \text{ of sales}. Store B will pay a flat rate of $40 per day plus 5\% \text{ of sales}. What do Sarah’s sales need to be for store B to be the better offer?

a) Write an inequality to model the problem.

b) Solve the inequality and interpret the solution.

Solution

a) Let \(s\) represent the value of Sarah’s sales for a particular day.

Determine \(s\) when the pay for store B is greater than the pay for store A.

Pay for store B > Pay for store A

\[40 + 5\% \text{ of sales} > 55 + 3\% \text{ of sales}\]

\[40 + 0.05s > 55 + 0.03s\]

Choose numbers you find easy to work with.
b) \[40 + 0.05s > 55 + 0.03s\]
\[40 + 0.05s - 40 > 55 + 0.03s - 40\]
\[0.05s > 15 + 0.03s\]
\[0.05s - 0.03s > 15 + 0.03s - 0.03s\]
\[0.02s > 15\]
\[\frac{0.02}{0.02} > \frac{15}{0.02}\]
\[s > 750\]

Sarah’s pay will be higher at store B when her sales are greater than $750. If she thinks that her sales will be more than $750 on most days, then store B is the better offer.

Show You Know

Danny started his own computer repair business. He offers his customers two payment options. Option A has a base fee of $40 plus $8 per hour. Option B has no base fee but costs $15 per hour. How many hours does a repair job have to take in order for option B to be less expensive?

a) Model the problem using an inequality.
b) After how many hours will option B be less expensive?

Key Ideas

- To solve a multi-step inequality, isolate the variable.

 \[-3(x - 5) \leq 3x + 9\]

 \[-3x + 15 \leq 3x + 9\]

 \[-3x + 15 - 3x \leq 3x + 9 - 3x\]

 \[-6x + 15 \leq 9\]

 \[-6x + 15 - 15 \leq 9 - 15\]

 \[-6x \leq -6\]

 \[-\frac{6x}{-6} \geq -\frac{6}{-6}\]

 \[x \geq 1\]

- Problems that involve comparing different options can often be modelled and solved using inequalities.
Check Your Understanding

Communicate the Ideas

1. Describe the similarities and differences between the process for solving a multi-step linear equation and a multi-step linear inequality. Discuss your answer with a classmate.

2. Consider the inequality $3x + 10 > 5x + 22$. Lindsay started to solve the inequality by subtracting $5x$ from both sides. Victoria told her to start by subtracting $3x$ from both sides.
 a) Use Lindsay’s approach to solve the inequality.
 b) Use Victoria’s approach to solve the inequality.
 c) Are the solutions the same? Explain.
 d) Explain why you think Victoria gave her advice. Is her reasoning helpful in solving the inequality? Explain.
 e) Which method of solving the inequality do you prefer? Explain why.

Practise

For help with #3 to #7, refer to Example 1 on pages 361–363.

3. Solve each inequality and verify the solution.
 a) $5x - 19 < 36$
 b) $27 + 2x > -13$
 c) $3 \leq \frac{x}{5} - 7$

4. Determine the solution of each inequality.
 a) $-5y + 92 \geq 40$
 b) $2.2 > 10.6 + 4y$
 c) $\frac{y}{-6} - 2 < 16$
 d) $\frac{3}{2}x + 6 \leq 10 \frac{4}{5}$

5. a) Verify that $x \geq 8$ is the correct solution to the inequality $3x + 11 \geq 35$.
 b) Verify that $x < -3$ is the correct solution to the inequality $24 - 5x > 39$.

6. Solve each inequality and verify the solution.
 a) $7x < 2x + 30$
 b) $10x - 22 \geq 8x$
 c) $-12x + 10 > 19 - 4x$
 d) $\frac{1}{2}(x + 5) > 22$

7. Determine each solution.
 a) $-2y > 8y - 20$
 b) $9y - 17 \leq 8 + 6.5y$
 c) $3.4 - 1.3y < 0.5y - 2.2$
 d) $\frac{3}{4}y - 1 \geq -\frac{1}{4}(1 - 2y)$

For help with #8 and #9, refer to Example 2 on pages 363–364.

8. For each situation
 • choose a variable and explain what it represents
 • write an inequality
 a) A basketball team wants to buy new jerseys. Uniforms R Us charges $50 per jersey. Jerseys Unlimited charges $40 per jersey plus $80 for a logo design. How many jerseys does the team need to buy for Jerseys Unlimited to be the better option?
 b) Ann uses her cell phone to send text messages. The monthly charge for text messaging is currently $15 plus $0.05 per message sent. The company is offering a new plan that costs a flat rate of $0.12 per text message. How many text messages does Ann need to send in order for the new plan to be the better option?
9. John is considering two paper delivery jobs. The Advance will pay $10 plus $0.05 for each paper delivered daily, and the Times will pay $15 plus $0.04 for each paper delivered daily. How many papers delivered each day would make the Advance the better offer?
 a) Write an inequality to model the problem.
 b) Solve the inequality and interpret the solution.

WWW Web Link
To learn how to solve inequalities using a graphing calculator, go to www.mathlinks9.ca and follow the links.

Apply
10. Kim is comparing the rates at two car rental companies for a one-day rental. She wants to determine how many kilometres she would need to drive for ABC Rentals to be the better rental option.

 ABC Rentals
 $25 per day plus $0.14 per kilometre

 It’s a Deal Rentals
 $55 per day

 a) Estimate the number of kilometres that would make ABC Rentals the better option.
 b) Represent the situation using an inequality.
 c) Solve the inequality and interpret the solution.
 d) Compare the solution with your estimate.

11. Kevin is comparing job offers at two stores. Dollar Deal offers $8/h plus 10% commission. Great Discounts offers $18/h with no commission. What do Kevin’s weekly sales need to be in order for Dollar Deal to pay more? Assume that he works an 8-h day five days per week.

12. The student council is considering two different companies to print the school’s yearbooks. Great Graphics charges $250 plus $12.25 per book. Print Express charges $900 plus $9.50 per book. How many orders for yearbooks would make Print Express the better option?

13. Greenway Golf Course offers two plans for paying for buckets of balls at the driving range. How many buckets of balls used per month make the members’ plan the better deal?

<table>
<thead>
<tr>
<th>Greenway Golf Course Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Plan: $6 per bucket</td>
</tr>
<tr>
<td>Member’s Plan: $98 monthly fee plus $1.50 per bucket</td>
</tr>
</tbody>
</table>

14. Molly has a business making candles. Her business costs are $200 plus $0.70 per candle made. She charges her customers $3.50 for each candle. If she sells all of the candles she makes, how many candles sold would allow her to make a profit?
15. Two full water storage tanks are being drained for maintenance. The first tank holds 800 L of water and drains at a rate of 18 L/min. The second tank holds 500 L of water and drains at a rate of 7 L/min. Use an inequality to determine when the first tank will contain less water than the second tank.

16. Rob and Ashley are riding their bicycles uphill. Currently, Rob is 5.7 km from the top and climbing at 0.24 km/min. Ashley is 4.5 km from the top and riding at 0.17 km/min.
 a) Estimate when Rob will be closer to the top than Ashley.
 b) Use an inequality to determine when Rob will be closer to the top than Ashley.

Extend

17. Solve \(\frac{2}{3}(2x - 5) < \frac{1}{2}(x + 2) \).
 Show the solution on a number line.

18. If \(2x + 5 > 10 \) and \(5x - 4 < 20 \), determine the possible values of \(x \). Show your solution on a number line.

19. Lauren charges $12 to cut lawns for neighbours. It takes her 25 min to cut each lawn and 40 min per month to maintain her lawn mower. She wants to earn $400 each month without working more than 16 h cutting lawns. How many lawns can Lauren cut in a month and stay within her guidelines? Use two inequalities to determine the range for the number of lawns that she can cut.

20. Ella’s teacher asked which is greater, \(x \) or \(-x \)? Ella said that \(x \) is always greater than \(-x \).
 a) Write an inequality to represent Ella’s response and solve it. When, if ever, is Ella correct?
 b) Ella’s teacher explained that her response is correct for some values of \(x \) only. For what values of \(x \) is Ella incorrect? Give one specific solution where Ella is correct and one where she is incorrect.

21. Solve \(-13 \leq 5 - 2x \) and \(5 - 2x \leq 9 \).

22. Given that \(b < 0 \), solve the inequality \(3 > bx + 3 \).

Math Link

An amusement park manager needs to ensure that the park is profitable. For the park to make a profit, the total revenue needs to be more than the total expenses.

There are fixed expenses and revenues that remain the same. There are also variable expenses and revenues that depend on the number of visitors.

The manager estimates operating expenses and revenues for the park per visitor. These are shown in the table. Assuming the park offers ten rides, fill in the missing information.

<table>
<thead>
<tr>
<th>Daily Expenses</th>
<th>Daily Revenues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total variable operating costs per visitor</td>
<td>$15</td>
</tr>
<tr>
<td>Total fixed costs ($5000 + $1200 per ride)</td>
<td></td>
</tr>
<tr>
<td>Admission (includes ride pass) per visitor</td>
<td>$38</td>
</tr>
<tr>
<td>Food per visitor</td>
<td>$25</td>
</tr>
<tr>
<td>Souvenirs per visitor</td>
<td>$10</td>
</tr>
<tr>
<td>Parking per visitor</td>
<td>$10</td>
</tr>
<tr>
<td>Total variable revenues per visitor</td>
<td></td>
</tr>
<tr>
<td>Fixed revenue from sponsorship</td>
<td>$2500</td>
</tr>
</tbody>
</table>

a) What is the total of the variable expenses per visitor? What are the total fixed costs? Write an expression to represent the total expenses.

b) What is the total of the variable revenues per visitor? What are the total fixed revenues? Write an expression to represent the total revenues.

c) Develop and solve an inequality to determine the number of visitors needed per day to make a profit. Justify your solution mathematically.
Chapter 9 Review

Key Words

For #1 to #6, write the term from the list that completes each statement.

- algebraically
- boundary point
- closed circle
- graphically
- inequality
- open circle
- solution

1. A mathematical statement comparing expressions that may not be equivalent is called an \(\underline{\text{inequality}} \).

2. Inequalities can be represented \(\underline{\text{graphically}} \) on a number line or \(\underline{\text{algebraically}} \) using symbols.

3. On a number line, a(n) \(\underline{\text{open circle}} \) indicates that the boundary point is not a possible solution.

4. For the inequality \(x > 5 \), the value of 7 is a specific \(\underline{\text{solution}} \).

5. On a number line, the value that separates solutions from non-solutions is called the \(\underline{\text{solution}} \).

6. On a number line, a(n) \(\underline{\text{closed circle}} \) indicates that the boundary point is a possible solution.

9.1 Representing Inequalities, pages 340–349

7. An Internet business is preparing a flyer to advertise a sale. Express each statement as an inequality.
 \(\underline{\text{a) Savings of up to 40%!}} \)
 \(\underline{\text{b) Free shipping for purchases of$500 or more!}} \)
 \(\underline{\text{c) Over 80 major items on sale!}} \)

8. Road racers use bicycles that are designed to go as fast as possible. Cycling organizations place restrictions on bicycle design to ensure fairness and rider safety. Express each restriction as an inequality.
 \(\underline{\text{a) The minimum allowable road racing bicycle mass is 6.8 kg.}} \)
 \(\underline{\text{b) A road racing bicycle can be no more than 185 cm in length.}} \)

9. Verbally and algebraically express the inequality represented on each number line.

 \(\underline{\text{a) \hspace{1cm}}} \)

 \(\underline{\text{b) \hspace{1cm}}} \)

10. Sketch a number line to represent each inequality.

 \(\underline{\text{a) } r > -4} \quad \underline{\text{b) } s \leq 7} \)

 \(\underline{\text{c) } 9.5 > t} \quad \underline{\text{d) } v \leq -\frac{5}{4}} \)

11. For each inequality in #10, state one value that is a solution and one value that is a non-solution.

9.2 Solving Single-Step Inequalities, pages 350–359

12. Solve each inequality.

 \(\underline{\text{a) } d - 7 > -10} \quad \underline{\text{b) } 2.7 < a - 2.7} \)

 \(\underline{\text{c) } -11 \geq \frac{b}{3}} \quad \underline{\text{d) } -\frac{1}{5}c > 3.2} \)
13. Verify that the solution shown on each number line is correct. If a number line is incorrect, explain why.
 a) \(-5x \geq -40\)
 ![Number line for -5x ≥ -40]
 b) \(-10 > 4x\)
 ![Number line for -10 > 4x]

14. Tim earns $14.50/h working for his parents’ business during the summer. His goal is to earn at least $600 each week. How many hours will Tim need to work each week to achieve his goal?
 a) Write an inequality to model the problem.
 b) Solve the inequality and interpret the solution.

15. Danielle is treating her friends to ice cream. Each scoop of ice cream costs $2.25. She wants to spend less than $30. How many scoops of ice cream can she buy and stay within her limit?

9.3 Solving Multi-Step Inequalities, pages 360–367

16. Verify whether the number line shows the correct solution for \(11 - 3x > 17\). If the number line is incorrect, explain why.
 ![Number line for 11 - 3x > 17]

17. a) Verify whether \(x \geq 5\) is the correct solution for \(5x + 4 \leq 6x - 1\).
 b) Describe a second method to verify the solution.

18. Solve each inequality and verify the solution.
 a) \(\frac{x}{3} - 5 < 10\)
 b) \(9x + 30 > 13x\)
 c) \(3x \leq 8x + 5\)
 d) \(5x + 8 < 4x - 12\)
 e) \(17 - 3x \leq 7x + 3\)
 f) \(2(3x + 4) > 5(6x + 7)\)

19. A student committee is planning a sports banquet. The cost of the dinner is $450 plus $24 per person. The committee needs to keep the total costs for the dinner under $2000. How many people can attend the banquet?

20. Greg is considering two different plans for music downloads. How many tracks purchased would make plan A the better option?

 Plan A
 - $0.97 per track purchased plus $10.00/month unlimited PC streaming plus $15.00/month for downloading songs to an MP3 player

 Plan B
 - $0.99 per track purchased plus $9.00/month unlimited PC streaming plus $144.00/year for downloading songs to an MP3 player
Chapter 9 Practice Test

For #1 to #5, select the best answer.

1. Karen told her mother that she would be out for no more than 4 h. If \(t \) represents the time in hours, which inequality represents this situation?
 - A \(t < 4 \)
 - B \(t \leq 4 \)
 - C \(t > 4 \)
 - D \(t \geq 4 \)

2. Which inequality does the number line represent?

```
-3 -2 -1 0 1
```
 - A \(x < -1 \)
 - B \(x \leq -1 \)
 - C \(x > -1 \)
 - D \(x \geq -1 \)

3. Which number is not a specific solution for the inequality \(y - 2 \geq -4 \)?
 - A -6
 - B -2
 - C 2
 - D 6

4. Solve: \(5 - x < 2 \)
 - A \(x < 3 \)
 - B \(x > 3 \)
 - C \(x < 7 \)
 - D \(x > 7 \)

5. What is the solution of \(5(x - 3) \leq 2x + 3 \)?
 - A \(x \leq -6 \)
 - B \(x \geq -6 \)
 - C \(x \leq 6 \)
 - D \(x \geq 6 \)

Complete the statements in #6 and #7.

6. The number line representing the inequality \(x < 5 \) would have a(n) \(\square \) circle at 5 and an arrow pointing to the \(\square \).

7. The solution to \(-4x < 16\) is \(x \) \(\square \) than \(\square \).

Short Answer

8. Represent each inequality on a number line.
 - a) \(-3 < x\)
 - b) \(x \leq 6.8\)

9. Verify whether \(x > -3 \) is the correct solution to the inequality \(8 - 5x < 23 \). Show your thinking. If the solution is incorrect, explain why.

10. Christine is researching a career as an airline pilot. One airline includes the following criteria for pilots. Express each of the criteria algebraically as an inequality.
 - a) Pilots must be shorter than 185 cm.
 - b) Pilots must be at least 21 years old.

11. Solve and graph each inequality.
 - a) \(-6 + x \geq 10\)
 - b) \(2.4x - 11 > 4.6\)
 - c) \(12 - 8x < 17 - 6x\)

12. Represent each situation algebraically as an inequality.
 - a) Luke earns $4.75 per item sold and must earn over $50.
 - b) It takes Nicole 3 h to sew beads on a pair of mitts. She has no more than 40 h of time to sew beads on all the mitts she plans to give to her relatives as presents.
You are an amusement park manager who has been offered a job planning a new park in a different location.

a) Give your park a name and choose a location. Explain how you made your choice. State the population of the area around the park that you chose.

b) Choose a reasonable number of rides for your park. Assume that the fixed costs include $5000 in addition to maintenance and wages. Assume maintenance and repairs cost $400 per ride and that it takes eight employees to operate and supervise each ride. Conduct research and then decide:
 • the number of hours that rides will be open
 • the average hourly wage for employees

c) Organize your estimates about operating expenses and revenues for the park. You can use the table in the Math Link on page 367 as a reference.

d) Write an expression to represent each of the following for the number of rides you chose:
 • expenses per visitor
 • revenue per visitor

e) For the number of rides you chose, how many visitors will be needed for the park to make a profit? Show all your work. Justify your solution mathematically.

f) Assume that you have now opened your park. You find that 0.1% of the people in the area come to the park per day, on average. Using this information, will your park earn a profit? If not, explain what changes you could make. Show all your work and justify your solution.

Extended Response

13. Consider the inequality $6x - 4 > 9x + 20$.
 a) Solve the inequality algebraically.
 b) Represent the solution graphically.
 c) Give one value that is a specific solution and one that is a non-solution.
 d) To solve the inequality, Min first subtracted $6x$ from both sides. Alan first subtracted $9x$ from both sides. Which method do you prefer? Explain why.

14. The Lightning Soccer Club plans to buy shirts for team members and supporters. Pro-V Graphics charges a $75 set-up fee plus $7 per shirt. BT Designs has no set-up fee but charges $10.50 per shirt. How many shirts does the team need to order for Pro-V Graphics to be the better option?

15. Dylan is organizing a curling tournament. The sports complex charges $115/h for the ice rental. Dylan has booked it for 6 h. He will charge each of the 14 teams in the tournament an entrance fee. How much must he charge each team in order to make a profit?