Focus on...

After this lesson, you will be able to...
- identify enlargements and reductions, and interpret the scale factor
- draw enlargements and reductions to scale

Did You Know?

One of the most powerful microscopes used in high schools today can enlarge an object 1500 times.

Materials
- centimetre grid paper
- tracing paper
- ruler

A microscope magnifies objects that are too small to be seen by the naked eye. This picture shows an enlarged view of cells in onion skin.

To calculate the factor that the onion cells are magnified by, multiply the magnification of the eyepiece by the magnification of the objective lens. The objective lens is the lens you choose to look at the object with.

Magnification of eyepiece: 10x
Magnification of objective lens: 40x
Total magnification: $10 \times 40 = 400x$

The onion cells are enlarged by 400 times their original size.

How do you think the enlarged view is the same as the actual piece of onion skin? How is it different?

Explore How to Enlarge an Image

1. Brainstorm with a classmate how you might enlarge the onion cell. What different strategies can you develop?

2. Try out at least one of your strategies and draw an image that is twice as large as this onion cell. What will be the ratio of the lengths of the sides of the enlargement to the original?
3. Compare your diagram(s) with one of a classmate. Which strategy for making an **enlargement** do you prefer? Explain why.

Reflect and Check

4. a) What method might you use to check that the enlarged image is twice as large as the original? Try your method.

 b) How are the enlargement and the original the same? How are they different?

Link the Ideas

Example 1: Draw an Enlargement

Draw a picture with dimensions that are twice as large as the original.

Solution

Method 1: Use Grid Paper

Trace the picture on centimetre grid paper.

How could you use 1-cm grid paper to draw the enlargement?

Draw the contents of each grid square into the corresponding region on a piece of 2-cm grid paper.

A map grid names the regions between grid lines. Try using a map grid to help copy the information. The first arrow has been drawn.
Method 2: Use a Scale Factor
Measure the length of each line segment.

```
  2 cm
  \ \ \
 0.3 cm
```

Multiply each measurement by a **scale factor** of 2.

\[
\begin{align*}
2 \times 2 &= 4 \\
0.3 \times 2 &= 0.6
\end{align*}
\]

The line lengths for the enlargement are 4 cm and 0.6 cm.

Use the new lengths to draw the enlargement.

Show You Know

Use two methods for drawing a picture with dimensions three times as large as this original.
Example 2: Draw a Reduction

Draw a reduction that is half as large as the original.

Solution

Method 1: Use Grid Paper
Trace the picture on centimetre grid paper.

Draw the contents of each grid square into the corresponding area on a piece of 0.5-cm grid paper.

How could you use 2-cm grid paper and 1-cm grid paper to draw this reduction? What if you have only 1-cm grid paper?
Method 2: Use a Scale Factor
Measure the length of each line segment.

Multiply the length by 0.5.

\[2 \times 0.5 = 1\]

The length of each line segment for the reduction is 1 cm.

Use the new length of each line segment to draw the reduction.

Tech Link
You can use a drawing program to enlarge or reduce an image using a scale factor. Or, you can drag an object to the size you want.

Show You Know
Use a method of your choice and a scale factor of 0.5 to draw a reduction of this shape.
Check Your Understanding

Communicate the Ideas

1. Jesse thinks many photographs in this student resource are reductions. Is he correct? Justify your reasoning.

2. Mary used a scale factor of 3 to enlarge a rectangle.
 \[3 \times 3 = 9 \]
 The length of each side for the enlargement is 9 cm.
 Is she correct? If so, explain how you know. If she is incorrect, explain her mistake. Discuss your answer with a partner.

3. This logo was designed for a film club. Describe two different methods to enlarge the logo for a poster.
Practise

For help with #4 and #5, refer to Example 1 on pages 131–132.

4. Use a scale factor of 2 to enlarge each letter.
 a) ![Image of enlarged letter M]
 b) ![Image of enlarged letter A]

5. Draw an enlargement of the flag using a scale factor of 4.
 ![Image of the French flag]

For help with #6 to #8, refer to Example 2 on pages 133–134.

6. Use a scale factor of 0.5 to draw a reduction of each letter.
 a) ![Image of reduced letter T]
 b) ![Image of reduced letter H]

7. For the image on the right in each pair of pictures, indicate if the scale factor is
 • greater than 1
 • less than 1
 • equal to 1
 Explain how you know.
 a) ![Image of two laptops]
 b) ![Image of two cell phones]
 c) ![Image of two portable media players]

8. Draw an image of the flag using a scale factor of \(\frac{1}{3} \).
 ![Image of Sierra Leone flag]
Apply

9. Melissa is observing a slide of human cheek cells under the microscope.
 a) Is this an enlargement or a reduction? Explain your reasoning.
 b) What is the scale factor? Explain its meaning.

10. Hassan and Mia made posters for the Festival du Voyageur. What is the scale factor on Mia’s poster compared to Hassan’s poster? Explain your reasoning.

Did You Know?

In 1969, the Festival du Voyageur was founded in Saint Boniface. The event has grown from three days held in Winnipeg’s French Quarter to a ten-day, province-wide celebration every February. This festival celebrates the joie de vivre of the fur traders who established the Red River colony and the growing French-Canadian community in western Canada. The Festival encourages people to appreciate the beauty of winter by participating in historical and entertaining activities.

Extend

14. Draw an enlargement of the quadrilateral on grid paper using a scale factor of 2.
15. Keita made a new bag for her laptop. Her cousin would like the pattern so she can make one. Draw a pattern using the actual measurements. You do not have to include the flap or the strap. Then, reduce the pattern so it will fit on a piece of notebook paper.

16. Create a scale diagram of your classroom.
 a) Measure the dimensions of the classroom and items that can be seen in a top view, including desks, tables, cupboards, and shelves.
 b) Choose a scale factor and draw the scale diagram on grid paper.
 c) What changes would you make to the layout of your classroom? Where would you place desks or tables? Draw a scale diagram of your new classroom layout.

17. Draw an image so that each line segment is
 a) 40% of the original length
 b) 2.5 times the original length

Math Link

Use what you have learned to design a project that requires a scale diagram. You may wish to choose one of the following projects:
- Design at least four different hopscotch patterns for a local recreational area.
- Design or enlarge a pattern for an outfit to wear at your school’s fashion show. Assume that you have the instructions and the skills needed to construct the outfit.
- Design a modification of a car’s blueprints for a project in your automotive course.
- Design a miniature version of a landmark in your province for display in a tourism project.
- Design a web page featuring a topic and related visuals of your choice. For example, you might feature contemporary drum designs.

a) What design project will you choose?

b) Research your project using the library or the Internet. Obtain or develop an initial design or drawing.

c) Using grid paper, draw an enlargement or a reduction of your design to scale.
Car manufacturers create scale drawings that show what a new car will look like.

An actual car measures 339.2 cm in length and 163.2 cm in height. It is drawn to a scale of 1 : 32. Is the drawing an accurate representation of the actual model? What different strategies can you develop to find out?

Explore the Accuracy of a Diagram

1. What measurements would help you compare the diagram of the car to the actual car? Take the measurements.

2. Compare the measurements. What conclusions can you make?

Reflect and Check

3. a) How did you set up your calculations to determine if the diagram accurately represents the actual car?

 b) What information did you need to determine whether the diagram is an accurate representation of the actual car?

4. a) Choose an object and draw one view of it. Estimate the scale between your drawing and the actual object.

 b) Use the method you developed to determine how accurately the drawing represents the actual object.

5. Compare your method with the one used by a classmate. How are the methods similar? How are they different? Which method seems more efficient? Explain.
Example 1: Use the Scale to Determine the Actual Length of an Object

The scale diagram of a skateboard uses a scale of 1:14. What is the actual length of the skateboard?

Solution

Method 1: Use the Scale

The scale 1:14 means that the actual dimensions of the skateboard are 14 times those of the diagram. Multiply the length of the skateboard in the diagram by 14.

\[5.5 \times 14 = 77\]

The actual length of the skateboard is 77 cm.

Method 2: Use a Proportion

Set up a proportion using the scale and the measurement that is given.

\[\frac{\text{scale}}{\text{diagram measurement}} = \frac{\text{actual measurement}}{5.5}\]

The actual length of the skateboard is 77 cm.

Literacy Link

A proportion is a relationship that shows two ratios are equal. It can be written in fraction or ratio form.

For example, the ratio 1 girl to 4 students is the same as 5 girls to 20 students. As a proportion, write:

\[\frac{1}{4} = \frac{5}{20}\] or \(1:4 = 5:20\)

The corresponding parts of each ratio are in the same units.

Show You Know

The scale for the diagram of the chinook salmon is 1:9.2.

Calculate the actual length of the salmon.
Example 2: Determine the Scale Factor

An actual Canadian quarter has a diameter of 23.88 mm. Calculate the scale factor used to create the diagram of the quarter. Express the answer to the nearest tenth.

Solution

Measure the diameter of the diagram of the quarter. It measures 1.4 cm.

Set up a proportion for the scale and the measurements.

\[
\text{scale} = \frac{\text{diagram measurement}}{\text{actual measurement}}
\]

\[
\frac{1}{\text{x}} = \frac{14}{23.88}
\]

\[
\div 14
\]

\[
1 = \frac{14}{23.88}
\]

\[
\div 14
\]

\[
\frac{1}{1.7} = \frac{14}{23.88}
\]

Divide to determine the scale factor.

\[
1 \div 1.7 \approx 0.588...
\]

\[
\approx 0.6
\]

The scale factor is approximately 0.6.

This means that the quarter in the diagram is approximately 0.6 times as large as the actual quarter.

Show You Know

The flying distance from Dawson City to Whitehorse is 540 km. The distance shown on the map is 3 cm.

a) Complete the following to express the map scale in words.

scale: 1 cm represents [] km

b) What is the scale factor?

Hint: 1 km = 100,000 cm.
Key Ideas

• A scale diagram is a proportionally smaller or larger representation of an actual object.

• The scale is a ratio between two sets of measurements.
 The scale compares a distance on the map to the actual distance.
 If 1 cm represents 12 km, then 1 cm represents 12×100000 cm.
 The scale is $1:1\,200\,000$.
 The scale factor is $\frac{1}{1\,200\,000}$.

• You can solve problems involving scale diagrams using different methods.
 - Use a scale.
 The distance from A to B on the map is 3 cm. Determine the actual distance.
 $3 \times 1\,200\,000 = 3\,600\,000$
 The actual distance is 3 600 000 cm or 36 km.
 - Use a proportion.
 The distance from A to C on the map measures 4 cm. Determine the actual distance.
 \[
 \text{scale} = \frac{\text{diagram measurement}}{\text{actual measurement}} = \frac{1}{1\,200\,000} = \frac{4}{1\,200\,000}
 \]
 The actual distance is 4 800 000 cm or 48 km.

Check Your Understanding

Communicate the Ideas

1. Joseph is unsure about how to determine the actual length of an object using a scale diagram. List the steps to solve a problem of your choice. Discuss the steps with a classmate.

2. Kira plans to ride 150 km on her bike. This distance is 10 cm on a map. Express the scale of the map
 a) in words
 b) as a ratio

3. How can you check that the larger image of the airliner is proportional to the dimensions in the original photo? Try out your method. Describe your results.
Practise

For help with #4 to #7, refer to Example 1 on page 140.

4. State whether you would multiply or divide to determine the missing value.
 a) \(\frac{1}{3} = \frac{\square}{144} \)
 b) \(\frac{1}{\square} = \frac{5.2}{117} \)

5. Determine the missing value in each proportion.
 a) \(\frac{1}{9} = \frac{\square}{117} \)
 b) \(\frac{1}{12} = \frac{10.5}{\square} \)

6. Calculate the actual length of each object.
 a) The scale for the image of the school bus is 1:302.5.

 \[\text{4 cm} \]

 \[\text{32 mm} \]

 b) The scale for the enlarged image of a mosquito is 1:0.5.

7. Determine the actual length of each object.
 a) The scale for the image of Victoria’s tallest totem pole is 1:972.5.

 \[\text{4 cm} \]

 b) The scale for the model of the humpback whale is 1:280.

8. What is the scale factor?
 a) \(\frac{30}{200} \)
 b) \(\frac{21}{12.5} \)

9. Determine the scale factor.
 a) \(\frac{0.5}{25} \)
 b) \(\frac{1.6}{3.2} \)

10. What scale factor was used to create the image of the snowboard if its actual length is 166 cm? Express your answer to the nearest hundredth.

 \[4 \text{ cm} \]

11. At the time his photo was taken for the hockey card, Ken was 152.4 cm tall. Calculate the scale factor used to create Ken’s image on the hockey card. Express the answer to the nearest hundredth.

 \[6 \text{ cm} \]

12. A flying distance is 800 km. If this distance on a map is 5 cm, what is the scale factor? Hint: 1 km = 100 000 cm.
13. A Ukrainian decorated egg is called a pysanka. A giant version of a pysanka is located in Vegreville, Alberta. The length of the egg is 9.4 m.

Apply

a) On a scale diagram of the pysanka, what would the length be, if you used a scale of 1:150?

b) Could your result represent the length of an actual egg? Explain.

14. The footprint of an adult male polar bear measures 30 cm across.

a) What is the scale factor of this drawing?

b) What is the actual length of the polar bear’s footprint? Show how you know.

c) Measure your hand span by spreading your hand on a piece of paper. Write the ratio of your hand span to the span of the polar bear’s footprint. What conclusion can you make?

15. Viruses are much smaller than bacteria. Some viruses measure 0.0001 mm in diameter. An artist’s diagram of a virus shows the diameter as 5 mm. Determine the scale factor used.

16. For the science fair, Leanne plans to build a scale model of a communications tower that is actually 250 m in height. The model has to fit in the foyer of the school, which has a floor-to-ceiling height of 3 m. If Leanne uses a scale of 1:100 to build the model, will it fit into the foyer? Show your work.

17. A model train is a scale model created from actual measurements. The scale factor for HO or Half Zero model trains is 1:87. A typical engine, such as the one shown, is 50 mm in height and 200 mm in length. Determine the actual dimensions of the train engine.

18. Determine the scale factor for each enlargement or reduction.

a) from A to B

b) from A to C

c) from B to C

d) from C to A

e) from C to B
19. Tracy took a picture of a wind turbine at the wind farm in Cowley Ridge, Alberta. The height of the turbine is 45 m.

![Image of wind turbine]

2.5 cm

a) What scale factor was used to make this reduction?
b) What is the length of a wind turbine blade?

20. \(\triangle ABC \) has coordinates A(4, 3), B(4, 0), and C(7, 0). \(\triangle DEF \) has coordinates D(0, -1), E(0, -2), and F(1, -2).

a) Draw the triangles on grid paper.
b) Are the two triangles proportional to each other? Justify your answer.
c) What is the scale factor of \(\triangle ABC \) to \(\triangle DEF \)?
d) Determine the scale factor of \(\triangle DEF \) to \(\triangle ABC \).
e) Calculate the area of each triangle.
f) What is the ratio of the area of \(\triangle ABC \) to the area of \(\triangle DEF \)? of the area of \(\triangle DEF \) to the area of \(\triangle ABC \)?
g) How does the scale factor of the side lengths compare to the scale factor of the areas?

21. Elk Valley Coal uses trucks such as the one shown. The man in the picture is 1.69 m tall.

![Image of Elk Valley Coal truck]

a) What is the height of the wheel of the truck?
b) What is the height of the truck?

22. A rectangle has sides measuring 12 cm and 16 cm. An enlarged, similar rectangle has an area of 1200 cm\(^2\).

a) What is the scale factor between
 • the smaller and the larger rectangle?
 • the larger and the smaller rectangle?
b) Is one method better than the other to express this scale factor? Explain your reasoning.

Did You Know?
Elk Valley Coal operates five open-pit coal mines. The mines are in southeastern British Columbia and in west-central Alberta.

Math Link

a) Determine the scale factor for the enlargement or reduction of the design you drew for the Math Link on page 138. Show your work.
b) Choose a new feature to add to your design.
 • Draw it on your scale diagram.
 • Calculate the actual dimensions of the new feature.
c) Explain how you know the scale diagram is proportional to the actual design.
Focus on…
After this lesson, you will be able to…
• determine similar triangles
• determine if diagrams are proportional
• solve problems using the properties of similar triangles

Bonnie and Justin created these logos for the Student Council. Their advisor tells them that the triangles are similar. How can she tell? What do you know about similar figures? What strategies can you develop to determine if triangles are similar?

Explore How to Identify Similar Triangles
1. Trace each logo on separate pieces of tracing paper.

2. a) Measure the angles in each logo. What do you notice about the corresponding angles?
 b) Measure the side lengths in each logo. What do you notice about the ratios of the corresponding sides of the triangles?

Reflect and Check
3. a) What conclusions can you make about the corresponding angles of the two triangles?
 b) What conclusions can you make about the corresponding sides of the two triangles?

4. a) What conditions do you think are necessary in order for two triangles to be similar?
 b) Test the conditions on a different set of two triangles. Are the triangles similar? Discuss with a classmate why you think the triangles are, or are not, similar.

Materials
• tracing paper
• ruler
• protractor

corresponding angles: $\angle A$ and $\angle D$
$\angle B$ and $\angle E$
$\angle C$ and $\angle F$
corresponding sides: AB and DE
BC and EF
AC and DF
Example 1: Identify Similar Triangles

Determine if \(\triangle ABC \) is similar to \(\triangle EFG \).

Solution

Similar triangles have corresponding angles that are equal in measure and corresponding sides that are proportional in length.

Compare corresponding angles:
- \(\angle A = 90^\circ \) and \(\angle E = 90^\circ \)
- \(\angle B = 37^\circ \) and \(\angle F = 37^\circ \)
- \(\angle C = 53^\circ \) and \(\angle G = 53^\circ \)

The corresponding angles are equal.

Compare corresponding sides:

\[
\frac{AB}{EF} = \frac{12}{4} = 3 \quad \frac{BC}{FG} = \frac{15}{5} = 3 \quad \frac{AC}{EG} = \frac{9}{3} = 3
\]

The corresponding sides are proportional with a scale factor of 3.

\(\triangle ABC \sim \triangle EFG \)

Literacy Link

Angles can be named in two ways:
- Use three capital letters. The middle letter is the vertex of the angle.
- Use only the middle letter identifying the vertex. Use a single letter when there is only one angle at a vertex.

For example, the angle at vertex \(L \) can be named \(\angle KLM \) or \(\angle L \).
Determine if each pair of triangles is similar. Show how you know.

a) \(\triangle RQP \) and \(\triangle TSP \)

- \(RQ = 2.8 \)
- \(PQ = 4.2 \)
- \(PR = 1.7 \)
- \(TS = 3 \)
- \(ST = 4.5 \)
- \(TR = 1.7 \)
- \(\angle R = 69° \)
- \(\angle Q = 69° \)

b) \(\triangle BAC \) and \(\triangle CDF \)

- \(AB = 7 \)
- \(AC = 3.3 \)
- \(BC = 2.7 \)
- \(CD = 3 \)
- \(DE = 2.5 \)
- \(EF = 4 \)
- \(DF = 4.1 \)
- \(\angle B = 70° \)
- \(\angle C = 70° \)

Example 2: Use Similar Triangles to Determine a Missing Side Length

Kyle is drawing triangles for a math puzzle. Use your knowledge of similar triangles to determine

a) if the triangles are similar

b) the missing side length

Solution

a) Check that \(\triangle KLM \) is similar to \(\triangle TUV \).

The sum of the angles in a triangle is 180°.

\[\angle K = 180° - 50° - 85° = 45°\]

\[\angle U = 180° - 85° - 45° = 50°\]

Compare corresponding angles:

\(\angle K = 45° \) and \(\angle T = 45° \)

\(\angle L = 50° \) and \(\angle U = 50° \)

\(\angle M = 85° \) and \(\angle V = 85° \)

All pairs of corresponding angles are equal.

Therefore, \(\triangle KLM \sim \triangle TUV \).

b) You can compare corresponding sides to determine the scale factor.

\[\frac{LM}{UV} = \frac{24}{8} \]

\[\frac{KL}{TU} = \frac{21}{7} \]

\[\frac{KL}{TU} = \frac{x}{10.5} \]

The scale factor is 3. You can solve for the unknown length.
Method 1: Use a Scale Factor
Since the triangles are similar, you can use the scale factor to determine the missing length.
\[
\frac{x}{10.5} = 3 \\
x = 31.5
\]
The missing side length is 31.5 units.

Method 2: Use a Proportion
Since the triangles are similar, you can use equal ratios to set up a proportion.
\[
\frac{KM}{TV} = \frac{KL}{TU} \\
\times 1.5 \\
\frac{21}{7} = \frac{x}{10.5} \\
\times 1.5 \\
x = 31.5
\]
The missing side length is 31.5 units.

Show You Know
Solve using a method of your choice.

a) \(\triangle GHI\) is similar to \(\triangle KLM\). What is the missing side length? Express your answer to the nearest tenth.

b) \(\triangle ABC\) is similar to \(\triangle EFC\). Determine the missing side length. Express your answer to the nearest tenth.
Key Ideas

- Triangles are similar if one of the following conditions holds true:
 - corresponding angles are equal in measure
 - corresponding sides are proportional in length

\[
\triangle DEF \text{ is similar to } \triangle ABC.
\]

\[
\triangle DEF \text{ is not similar to } \triangle PQR.
\]

\[
\angle D = \angle A, \quad \angle E = \angle B, \quad \angle F = \angle C
\]

\[
\frac{DE}{AB} = \frac{3}{1.5} \quad \frac{EF}{BC} = \frac{2.2}{1.1} \quad \frac{DF}{AC} = \frac{2.6}{1.3}
\]

- You can solve problems related to similar triangles using different methods.
 - Use a scale factor.
 - Use a proportion.

Check Your Understanding

Communicate the Ideas

1. If two triangles are similar, what can you say about the angles of the triangles? the side lengths of the triangles?

2. Amanda is unclear about similar triangles. She drew these two triangles and states they are similar. Is she correct? Explain.

3. Are two triangles that have equal angles and equal sides similar? Use an example to support your answer.

Practise

For help with #4 to #8, refer to Example 1 on page 147.

4. List the corresponding angles and the corresponding sides for \(\triangle PQR \) and \(\triangle TUV \).

5. What are the corresponding angles and the corresponding sides in this pair of triangles?
6. Are the triangles similar? Show how you know.

7. Determine if the triangles are similar. Show how you know.

8. Determine which pairs of triangles are similar. Use a sketch to help explain how you know.

<table>
<thead>
<tr>
<th>Triangle</th>
<th>Angles</th>
<th>Sides</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔABC</td>
<td>∠A = 90°</td>
<td>AB = 6</td>
</tr>
<tr>
<td></td>
<td>∠B = 45°</td>
<td>BC = 8.4</td>
</tr>
<tr>
<td></td>
<td>∠C = 45°</td>
<td>AC = 6</td>
</tr>
<tr>
<td>ΔEFG</td>
<td>∠E = 90°</td>
<td>EF = 3</td>
</tr>
<tr>
<td></td>
<td>∠F = 45°</td>
<td>FG = 4.2</td>
</tr>
<tr>
<td></td>
<td>∠G = 45°</td>
<td>EG = 3</td>
</tr>
<tr>
<td>ΔHIJ</td>
<td>∠H = 90°</td>
<td>HI = 9.2</td>
</tr>
<tr>
<td></td>
<td>∠I = 60°</td>
<td>IJ = 18.4</td>
</tr>
<tr>
<td></td>
<td>∠J = 30°</td>
<td>HJ = 15.9</td>
</tr>
<tr>
<td>ΔKLM</td>
<td>∠K = 90°</td>
<td>KL = 9</td>
</tr>
<tr>
<td></td>
<td>∠L = 45°</td>
<td>LM = 12.6</td>
</tr>
<tr>
<td></td>
<td>∠M = 45°</td>
<td>KM = 9</td>
</tr>
</tbody>
</table>

For help with #9 to #11, refer to Example 2 on pages 148–149.

9. ΔSTR is similar to ΔUWV. Determine the missing side length.

10. ΔCDE is similar to ΔGFE. What is the missing side length?

11. Draw a triangle that is similar to the one shown. Label the measurements for angles and sides on your similar triangle.

Apply

12. Sam built a ramp to a loading dock. The ramp has a vertical support 2 m from the base of the loading dock and 3 m from the base of the ramp. If the vertical support is 1.2 m in height, what is the height of the loading dock?
13. Two extension ladders are leaning at the same angle against a vertical wall. The 3-m ladder reaches 2.4 m up the wall. How much farther up the wall does the 8-m ladder reach?

14. Erin, who is 1.60 m tall, casts a shadow that is 1.25 m long. Her shadow extends to the end of a tree’s shadow when she stands 4.75 m from the tree. What is the height of the tree?

15. Sara was helping her father assemble a slide for the local park. He decides to reinforce the slide with an extra support beam. How long should the extra support beam be?

16. Peter, who is 168 cm tall, casts a 45-cm shadow. Michael, who is standing beside him, casts a 40-cm shadow. Can you tell who is taller? Use a diagram to help explain why or why not.

17. Develop a word problem that can be solved using similar triangles. Include a diagram.

18. Extend

A tourist wants to estimate the height of an office tower. He places a mirror on the ground and moves away to sight the top of the tower in the mirror.

a) How tall is the tower?
b) In this situation, why is the mirror reflection a better way to indirectly measure the tower than by using shadows?

19. Is it possible for the two triangles described below to be similar? Explain your reasoning.
 a) Two angles of one triangle measure 60° and 70°. Two angles of the other triangle measure 50° and 80°.
 b) Two angles of one triangle measure 45° and 75°. Two angles of the other triangle measure 45° and 60°.

20. The sides of a triangle measure 3 cm, 5 cm, and 6 cm. If the side of a similar triangle corresponding to 3 cm measures 8 cm,
 a) determine the lengths of the other sides
 b) determine the ratio of the perimeter of the smaller triangle to the perimeter of the larger triangle

21. Using a measuring tape, your shadow, and yourself, how can you determine the height of your school without actually measuring it?
22. $\triangle WXY$ is similar to $\triangle ZWY$. Calculate ZY to the nearest tenth.

23. Use two different sets of measurements to determine the area of $\triangle KLM$.

Math Link

For your design project report, include a signature logo that features your name.

a) On a sheet of 8.5×11 paper, design your logo. Include a triangle that is similar to the one shown. Measure all the angles and side lengths.

b) Draw a scale diagram of the logo to fit on your design project. Identify the scale factor you used.

Tech Link

Similarity and Scale Factors

In this activity, you can use dynamic geometry software to explore similarity and scale factors. To use this activity, go to www.mathlinks9.ca and follow the links.

Explore

1. Slide point X along line segment AB and describe what happens to the image drawing.

2. How do the measures of the corresponding sides of the drawing change relative to each other? Explain.

3. Compare the scale factor to the lengths of the sides of the original drawing and the image drawing. Create and complete a table similar to the one below with measurements taken at different locations. Discuss your findings with a classmate. Hint: In the table, m means the measure of.

<table>
<thead>
<tr>
<th>mFE</th>
<th>$mF'E'$</th>
<th>mAX \ mXB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Focus on…
After this lesson, you will be able to…
• identify similar polygons and explain why they are similar
• draw similar polygons
• solve problems using the properties of similar polygons

Similar Polygons

The single star in a Lakota star quilt is made from fabric cut into diamond shapes and pieced together in eight sections. When the sections are joined together, an eight-pointed star is formed.

Are the different-sized diamonds formed on the quilt similar? What strategies might you use to find out?

Explore How to Identify Similar Polygons

1. Trace each diamond on separate pieces of tracing paper.

2. a) Organize your data about corresponding angles and corresponding sides.
 b) What do you observe about the corresponding angles?
 c) What do you observe about the ratios of the corresponding sides?

Reflect and Check

3. What conclusions can you make about the three diamonds?

4. a) What conditions do you think are necessary in order for two polygons to be similar?
 b) Test the conditions on a different set of two polygons. Are the polygons similar? Discuss with a classmate why you think the polygons are, or are not, similar.
Link the Ideas

Similar polygons have corresponding angles that are equal and corresponding side lengths that are proportional.

Example 1: Identify Similar Polygons

The two quadrilaterals look similar. Is M′A′T′H′ a true enlargement of MATH? Explain.

Solution

Compare corresponding angles:
\[\angle M = 90° \text{ and } \angle M' = 90° \]
\[\angle A = 100° \text{ and } \angle A' = 100° \]
\[\angle T = 80° \text{ and } \angle T' = 80° \]
\[\angle H = 90° \text{ and } \angle H' = 90° \]

Compare corresponding sides:
\[\frac{M'A'}{MA} = \frac{1.54}{1.1} = 1.4 \]
\[\frac{A'T'}{AT} = \frac{4.9}{3.5} = 1.4 \]
\[\frac{H'T'}{HT} = \frac{2.1}{1.5} = 1.4 \]
\[\frac{M'H'}{MH} = \frac{4.2}{3} = 1.4 \]

The corresponding side lengths are proportional with a scale factor of 1.4. M′A′T′H′ is a true enlargement of MATH by a scale factor of 1.4.

Show You Know

Determine if the two trapezoids are similar. Explain how you know.
Example 2: Determine a Missing Side Length

Jason wants to make an enlargement of the flag of Nunavut. He knows that the two rectangles JKLM and PQRS are similar. What is the missing side length of rectangle JKLM?

Solution

Since the rectangles are similar, the side lengths are proportional. Use corresponding sides to set up a proportion.

\[
\frac{KL}{QR} = \frac{LM}{RS}
\]

\[
\frac{32}{5} = \frac{x}{9}
\]

\[
6.4 = \frac{x}{9}
\]

\[
x = 57.6
\]

The missing side length is 57.6 cm.

Show You Know

The two trapezoids shown are similar. Determine the missing side length. Show your work.

Key Ideas

- Polygons are similar if both of the following conditions hold true:
 - corresponding angles are equal in measure
 - corresponding side lengths are proportional
- You can use similar polygons to determine unknown side lengths or angle measures.
Check Your Understanding

Communicate the Ideas

1. Develop an example and a solution to help explain how to determine a missing side length in a pair of similar polygons.

2. a) Use grid paper to draw a parallelogram that is similar to the one shown. Explain how you know the two are similar.
 b) Compare your similar parallelogram with the one of a classmate. Are your parallelograms similar to each other? Explain.

Practise

For help with #3 and #4, refer to Example 1 on page 155.

3. Decide if each pair of polygons is similar. Show your reasoning.
 a)
 b)

4. Identify all sets of similar polygons in this collage. You might trace the image and colour code sets of similar polygons.

For help with #5 and #6, refer to Example 2 on page 156.

5. Use the two similar pentagons to help determine the missing side length. Show your work.

6. The sides of rectangle A measure 22.4 m and 14.7 m. One side of a similar rectangle B measures 4.3 m. The measure for the other side is missing. Rectangle A is an enlargement of rectangle B with a scale factor of 5.2. What is the missing measurement, to the nearest tenth?

Apply

7. William made the statement, “All quadrilaterals with sides the same length are similar.” Is he correct? Explain.

Web Link

To explore the changes when you manipulate two similar figures and vary the scale factor, go to www.mathlinks9.ca and follow the links.
8. Chicken wire is often used for building fences. It is made of flexible wire with gaps that are shaped like hexagons.

 a) Use grid paper to draw and label:
 • two hexagons that are similar to one shown in the picture
 • two hexagons that are not similar to one shown

 b) For each pair of hexagons, explain how you know they are similar or not similar.

9. Michelle plans to make a game board that is a reduction of an actual baseball diamond. A baseball diamond is a square with sides that measure 27.4 m (2740 cm). Draw Michelle’s game board using a scale of 1 : 182.5.

10. a) Rachel’s family is making a cement deck around a pool that is a regular octagon. They want the cement deck to keep the same shape as the pool, but with sides 1.5 times as long as the pool. What do the lengths of the cement forms along the sides of the outer octagon need to be in order to pour the cement?

 b) What is the sum of the interior angles in an octagon? Show how you know.

11. The pattern shows the front of a birdhouse. Chris enlarged the pattern using a scale factor of 3. He needs to make it twice as large as that.

 a) Draw the correct size.

 b) Explain how you know the enlargement is similar to the original pattern.

12. A piece of cardboard is cut showing the inner and outer boundaries of a pair of similar quadrilaterals. Calculate the perimeter of the smaller quadrilateral.

 Extend

13. In a camera, similar figures occur as shown. Calculate the actual height of the arrow.

 Did You Know?
 In the past, some cameras showed the image upside down in the viewfinder.

 Literacy Link
 A regular polygon, has all sides equal and all angles equal.
14. Eliza is building a model of the canvas tent her family uses in Behchoko, NWT. The model will have a peak height of 12 cm. The actual tent floor measures 2.4 m by 3 m. The walls are 1.5 m high and the peak height is 2.4 m.

a) What scale factor will Eliza need to use for her model?

b) The front of the tent is a pentagon. Calculate the dimensions of this polygon on the model.

c) Calculate the other dimensions of the tent model.

15. An old rectangular tank with length 0.3 m could hold 154 L of water. A new similar tank has a length of 1.5 m. What is the capacity of the new tank?

16. How do the ratios of areas compare to the ratios of corresponding side lengths in similar polygons? Use pairs of similar polygons to help explain your answer.

17. Develop an argument showing that if two prisms have corresponding side lengths in the ratio of 3 : 1, then their volumes are in the ratio of 27 : 1.

18. a) Identify the similar polygons shown in the tessellation.

b) Describe the pattern verbally. Use your description to create your own tessellation that features similar polygons.

c) Sketch each different set of similar polygons in your tessellation. Label the dimensions of each set.

Math Link

For your design project, include a polygon.
- Use a polygon that is similar to one shown here.
- Use an appropriate scale factor and draw a scale diagram of the polygon to fit on your design project. Identify the scale factor used on your design.
Chapter 4 Review

Key Words

For #1 to #4, unscramble the letters for each term. Use the clues to help you.

1. L G Y N O P O
 A _ _ _ _ _ _ is a closed figure with sides that are line segments.

2. I R I S L M A
 _ _ _ _ _ _ _ _ _ _ _ _ figures have equal corresponding angles and proportional corresponding side lengths.

3. C A S E L O T C A F R
 The _ _ _ _ _ _ is the constant amount by which any dimension of a shape is enlarged or reduced.

4. R R O O P P T I N O
 A _ _ _ _ _ _ _ _ _ _ _ _ is a statement that says two ratios are equal.

4.1 Enlargements and Reductions, pages 130–138

5. Use grid paper to draw the design using each scale factor.

 a) scale factor of 2
 b) scale factor of 0.5

6. Draw an image of the egg design that is three times as large as the original.

Art Link

Pysanky is the traditional Eastern European art that uses beeswax and dyes to create designs on eggs.

7. Draw a reduction of the arrow that is half as large as the original.

8. Draw an image of the square to illustrate each of the following.
 a) a scale factor equal to 1
 b) a scale factor greater than 1
 c) a scale factor less than 1

4.2 Scale Diagrams, pages 139–145

9. An actual CD jewel case measures 14.3 cm. Determine the scale factor used to create the image.

 [Diagram of CD jewel case with 2.2 cm scale]
10. Determine the actual length of each object from its scale diagram.
 a) spoon
 ![Spoon scale diagram](image1)
 Scale 1:4
 b) toy car
 ![Toy car scale diagram](image2)
 Scale 1:2.78

11. The scale for an image of a tower is 1 cm represents 12.5 m. If the actual tower measures 108.75 m in height, what is its height on the drawing?

12. A highway is 600 km in length. If the length of the highway on a map is 6 cm, what is the scale factor? Hint: 1 km = 100 000 cm.

4.3 Similar Triangles, pages 146–153

13. Are these triangles similar? Explain.

14. \(\triangle UVW \) is similar to \(\triangle UYZ \). Determine the length \(x \).

4.4 Similar Polygons, pages 154–159

15. Given that \(\triangle GHI \) is similar to \(\triangle KLM \), what is the length of side IG?

16. Determine if the two polygons are similar.

17. The sides of one quadrilateral measure 3 cm, 9 cm, 12 cm, and \(x \). The corresponding sides of a similar quadrilateral measure 2.25 cm, 6.75 cm, 9 cm, and 13.5 cm. What is the value of \(x \)?

18. The pentagons DEFGH and JKLMN are similar. Determine the missing side lengths, to the nearest tenth.
Chapter 4 Practice Test

For #1 to #4, choose the best answer.

1. What is the value of \(x \) if \(\frac{1}{x} = \frac{8}{32} \)?

 - A 2
 - B 3
 - C 4
 - D 7

2. \(\triangle GHI \sim \triangle KLM \). Determine the missing length.

 - A 4
 - B 8
 - C 10
 - D 14

3. On a scale diagram, what does 1 in the scale 1 : 5 represent?

 - A how many times larger the object is
 - B one unit of the actual size
 - C one unit of the diagram size
 - D the total size of the scale diagram

4. Which pair of quadrilaterals appears to be similar?

 - A Figure 1 and Figure 2
 - B Figure 1 and Figure 3
 - C Figure 1 and Figure 4
 - D Figure 2 and Figure 3

Complete the statements in #5 and #6.

5. An umbrella is 75 cm in length. Using a scale of 1 : 5, the length of an image of the umbrella is \(\square \).

6. The constant amount by which the dimensions of an object are enlarged or reduced is called the \(\square \).

Short Answer

7. Draw a reduction that is half the size of this figure.

8. If the actual pencil has a length of 18.8 cm, determine the scale factor used to create this image. Give your answer to the nearest tenth.

9. The flagpole in front of city hall is 5.5 m tall. If the height of a model of the flagpole is 6.5 cm, what is the scale factor of the model? Express your answer to the nearest hundredth.

10. An actual western spruce budworm larva can grow to 32 mm in length. Using a scale of 1 : 1.43, what would be the length of an image of the larva? Express your answer to the nearest tenth.

Did You Know?

Western spruce budworm larvae feed mostly on the foliage, flowers, and developing cones of fir and spruce trees. These insects cause serious damage to Douglas firs in the interior of British Columbia.
Finalize your design project.

a) Decide on the layout. Include the following elements:
 • an enlarged or reduced image of your design
 • a similar triangle for the logo
 • a similar polygon that features the title of your design project
 • a scale diagram of your design

b) Make a presentation that includes:
 • your design and the scale you used
 • a description or actual sample of the completed design project
 • what you learned about scale diagrams and similarity

Extended Response

12. At noon one day, a 20-m vertical pole casts a shadow that is 28 m long. A nearby building casts a shadow 35 m in length. Sketch the situation. How tall is the building?

13. Determine if \(\triangle ABC \) and \(\triangle DEF \) are similar. Show all your work.

14. Bees made the hexagonal-shaped cells in the honeycomb shown here. Draw a hexagon similar to one of these cells. Explain why the two hexagons are similar.

Did You Know?

A honeycomb is a mass of hexagonal wax cells that contain bee larvae, honey, and pollen. The hexagonal arrangement is an efficient way to pack as many cells as possible in a limited space.

15. These polygons are similar. Determine the missing lengths \(x \) and \(y \). Show your work.